Pattern Matching for Self- Tuning of MapReduce Jobs
Abstract: In this paper, we study CPU utilization time patterns of several MapReduce applications. After extracting running patterns of several applications, they are saved in a reference database to be later used to tweak system parameters to efficiently execute unknown applications in future. To achieve this goal, CPU utilization patterns of new applications are compared with the already known ones in the reference database to find/predict their most probable execution patterns. Because of different patterns lengths, the Dynamic Time Warping (DTW) is utilized for such comparison; a correlation analysis is then applied to DTWs outcomes to produce feasible similarity patterns. Three real applications (WordCount, Exim Mainlog parsing and Terasort) are used to evaluate our hypothesis in tweaking system parameters in executing similar applications. Results were very promising and showed effectiveness of our approach on pseudo-distributed MapReduce platforms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.