Papers
Topics
Authors
Recent
Search
2000 character limit reached

Ordering the space of finitely generated groups

Published 20 Jan 2013 in math.GR | (1301.4669v1)

Abstract: We consider the oriented graph whose vertices are isomorphism classes of finitely generated groups, with an edge from G to H if, for some generating set T in H and some sequence of generating sets S_i in G, the marked balls of radius i in (G,S_i) and in (H,T) coincide. Given a nilpotent group G, we characterize its connected component in this graph: if that connected component contains at least one torsion-free group, then it consists of those groups which generate the same variety of groups as G. The arrows in the graph define a preorder on the set of isomorphism classes of finitely generated groups. We show that a partial order can be imbedded in this preorder if and only if it is realizable by subsets of a countable set under inclusion. We show that every countable group imbeds in a group of non-uniform exponential growth. In particular, there exist groups of non-uniform exponential growth that are not residually of subexponential growth and do not admit a uniform imbedding into Hilbert space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.