Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Any-Space Probabilistic Inference (1301.3848v1)

Published 16 Jan 2013 in cs.AI

Abstract: We have recently introduced an any-space algorithm for exact inference in Bayesian networks, called Recursive Conditioning, RC, which allows one to trade space with time at increments of X-bytes, where X is the number of bytes needed to cache a floating point number. In this paper, we present three key extensions of RC. First, we modify the algorithm so it applies to more general factorization of probability distributions, including (but not limited to) Bayesian network factorizations. Second, we present a forgetting mechanism which reduces the space requirements of RC considerably and then compare such requirmenets with those of variable elimination on a number of realistic networks, showing orders of magnitude improvements in certain cases. Third, we present a version of RC for computing maximum a posteriori hypotheses (MAP), which turns out to be the first MAP algorithm allowing a smooth time-space tradeoff. A key advantage of presented MAP algorithm is that it does not have to start from scratch each time a new query is presented, but can reuse some of its computations across multiple queries, leading to significant savings in ceratain cases.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.