Gaussian lower bound for the Neumann Green function of ageneral parabolic operator (1301.2906v4)
Abstract: Based on the fact that the Neumann Green function can be constructed as a perturbation of the fundamental solution by a single-layer potential, we establish gaussian two-sided bounds for the Neumann Green function for a general parabolic operator. We build our analysis on classical tools coming from the construction of a fundamental solution of a general parabolic operator by means of the so-called parametrix method. At the same time we provide a simple proof for the gaussian two-sided bounds for the fundamental solution. We also indicate how our method can be adapted to get a gaussian lower bound for the Neumann heat kernel of a compact Riemannian manifold with boundary having non negative Ricci curvature.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.