2000 character limit reached
Systematics on ground-state energies of nuclei within the neural networks
Published 11 Jan 2013 in nucl-th | (1301.2407v1)
Abstract: One of the fundamental ground-state properties of nuclei is binding energy. In this study, we have employed artificial neural networks (ANNs) to obtain binding energies based on the data calculated from Hartree-Fock-Bogolibov (HFB) method with the two SLy4 and SKP Skyrme forces. Also, ANNs have been employed to obtain two-neutron and two-proton separation energies of nuclei. Statistical modeling of nuclear data using ANNs has been seen as to be successful in this study. Such a statistical model can be possible tool for searching in systematics of nuclei beyond existing experimental nuclear data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.