A Forgetting-based Approach to Merging Knowledge Bases (1301.2137v1)
Abstract: This paper presents a novel approach based on variable forgetting, which is a useful tool in resolving contradictory by filtering some given variables, to merging multiple knowledge bases. This paper first builds a relationship between belief merging and variable forgetting by using dilation. Variable forgetting is applied to capture belief merging operation. Finally, some new merging operators are developed by modifying candidate variables to amend the shortage of traditional merging operators. Different from model selection of traditional merging operators, as an alternative approach, variable selection in those new operators could provide intuitive information about an atom variable among whole knowledge bases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.