Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Legendre Functions, Spherical Rotations, and Multiple Elliptic Integrals (1301.1735v4)

Published 9 Jan 2013 in math.CA, math-ph, and math.MP

Abstract: A closed-form formula is derived for the generalized Clebsch-Gordan integral $ \int_{-1}1 {[}P_{\nu}(x){]}2P_{\nu}(-x)\D x$, with $ P_\nu$ being the Legendre function of arbitrary complex degree $ \nu\in\mathbb C$. The finite Hilbert transform of $ P_{\nu}(x)P_{\nu}(-x),-1<x<1$ is evaluated. An analytic proof is provided for a recently conjectured identity $\int_01[\mathbf K(\sqrt{1-k2})]{3}\D k=6\int_01[\mathbf K(k)]2\mathbf K(\sqrt{1-k2})k\D k=[\Gamma(1/4)]{8}/(128\pi2) $ involving complete elliptic integrals of the first kind $ \mathbf K(k)$ and Euler's gamma function $ \Gamma(z)$.

Summary

We haven't generated a summary for this paper yet.