Holomorphic Lagrangian fibrations on hypercomplex manifolds
Abstract: A hypercomplex manifold is a manifold equipped with a triple of complex structures satisfying the quaternionic relations. A holomorphic Lagrangian variety on a hypercomplex manifold with trivial canonical bundle is a holomorphic subvariety which is calibrated by a form associated with the holomorphic volume form; this notion is a generalization of the usual holomorphic Lagrangian subvarieties known in hyperkaehler geometry. An HKT (hyperkaehler with torsion) metric on a hypercomplex manifold is a metric determined by a local potential, in a similar way to the Kaehler metric. We prove that a base of a holomorphic Lagrangian fibration is always Kaehler, if its total space is HKT. This is used to construct new examples of hypercomplex manifolds which do not admit an HKT structure.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.