Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Test ideals of non-principal ideals: Computations, Jumping Numbers, Alterations and Division Theorems (1212.6956v4)

Published 31 Dec 2012 in math.AG and math.AC

Abstract: Given an ideal $a \subseteq R$ in a (log) $Q$-Gorenstein $F$-finite ring of characteristic $p > 0$, we study and provide a new perspective on the test ideal $\tau(R, at)$ for a real number $t > 0$. Generalizing a number of known results from the principal case, we show how to effectively compute the test ideal and also describe $\tau(R, at)$ using (regular) alterations with a formula analogous to that of multiplier ideals in characteristic zero. We further prove that the $F$-jumping numbers of $\tau(R, at)$ as $t$ varies are rational and have no limit points, including the important case where $R$ is a formal power series ring. Additionally, we obtain a global division theorem for test ideals related to results of Ein and Lazarsfeld from characteristic zero, and also recover a new proof of Skoda's theorem for test ideals which directly mimics the proof for multiplier ideals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.