Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

KMS states on $C^*$-algebras associated to higher-rank graphs (1212.6811v1)

Published 31 Dec 2012 in math.OA

Abstract: Consider a higher-rank graph of rank k. Both the Cuntz-Krieger algebra and the Toeplitz-Cuntz-Krieger algebra of the graph carry natural gauge actions of the torus Tk, and restricting these gauge actions to one-parameter subgroups of Tk gives dynamical systems involving actions of the real line. We study the KMS states of these dynamical systems. We find that for large inverse temperatures \beta, the simplex of KMS_\beta states on the Toeplitz-Cuntz-Krieger algebra has dimension d one less than the number of vertices in the graph. We also show that there is a preferred dynamics for which there is a critical inverse temperature \beta_c: for \beta larger than \beta_c, there is a d-dimensional simplex of KMS states; when \beta=\beta_c and the one-parameter subgroup is dense, there is a unique KMS state, and this state factors through the Cuntz-Krieger algebra. As in previous studies for k=1, our main tool is the Perron-Frobenius theory for irreducible nonnegative matrices, though here we need a version of the theory for commuting families of matrices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.