2000 character limit reached
Growth of quotients of groups acting by isometries on Gromov hyperbolic spaces (1212.6611v1)
Published 29 Dec 2012 in math.GR
Abstract: We show that every non-elementary group $G$ acting properly and cocompactly by isometries on a proper geodesic Gromov hyperbolic space $X$ is growth tight. In other words, the exponential growth rate of $G$ for the geometric (pseudo)-distance induced by $X$ is greater than the exponential growth rate of any of its quotients by an infinite normal subgroup. This result generalizes from a unified framework previous works of Arzhantseva-Lysenok and Sambusetti, and provides an answer to a question of the latter.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.