Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Inhomogenous random zero sets (1212.5548v1)

Published 21 Dec 2012 in math.CV and math.PR

Abstract: We construct random point processes in the complex plane that are asymptotically close to a given doubling measure. The processes we construct are the zero sets of random entire functions that are constructed through generalised Fock spaces. We offer two alternative constructions, one via bases for these spaces and another via frames, and we show that for both constructions the average distribution of the zero set is close to the given doubling measure, and that the variance is much less than the variance of the corresponding Poisson point process. We prove some asymptotic large deviation estimates for these processes, which in particular allow us to estimate the hole probability', the probability that there are no zeroes in a given open bounded subset of the plane. We also show that thesmooth linear statistics' are asymptotically normal, under an additional regularity hypothesis on the measure. These generalise previous results by Sodin and Tsirelson for the Lebesgue measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.