Papers
Topics
Authors
Recent
2000 character limit reached

Linear and angular momentum spaces for Majorana spinors

Published 21 Dec 2012 in math-ph, math.MP, and quant-ph | (1212.5465v2)

Abstract: In a Majorana basis, the Dirac equation for a free spin one-half particle is a 4x4 real matrix differential equation. The solution can be a Majorana spinor, a 4x1 real column matrix, whose entries are real functions of the space-time. Can a Majorana spinor, whose entries are real functions of the space-time, describe the energy, linear and angular momentums of a free spin one-half particle? We show that it can. We show that the Majorana spinor is an irreducible representation of the double cover of the proper orthochronous Lorentz group and of the full Lorentz group. The Fourier-Majorana and Hankel-Majorana transforms are defined and related to the linear and angular momentums of a free spin one-half particle.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.