Papers
Topics
Authors
Recent
2000 character limit reached

Conformal Form of Pseudo-Riemannian Metrics by Normal Coordinate Transformations II (1212.4752v1)

Published 19 Dec 2012 in math-ph and math.MP

Abstract: In this paper, we have reintroduced a new approach to conformal geometry developed and presented in two previous papers, in which we show that all n-dimensional pseudo-Riemannian metrics are conformal to a flat n-dimensional manifold as well as an n-dimensional manifold of constant curvature when Riemannian normal coordinates are well-behaved in the origin and in their neighborhood. This was based on an approach developed by French mathematician Elie Cartan. As a consequence of geometry, we have reintroduced the classical and quantum angular momenta of a particle and present new interpretations. We also show that all n-dimensional pseudo-Riemannian metrics can be embedded in a hyper-cone of a flat n+2-dimensional manifold.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.