Papers
Topics
Authors
Recent
Search
2000 character limit reached

Protected boundary states in gapless topological phases

Published 11 Dec 2012 in cond-mat.supr-con | (1212.2673v2)

Abstract: We systematically study gapless topological phases of (semi-)metals and nodal superconductors described by Bloch and Bogoliubov-de Gennes Hamiltonians. Using K-theory, a classification of topologically stable Fermi surfaces in (semi-)metals and nodal lines in superconductors is derived. We discuss a generalized bulk-boundary correspondence that relates the topological features of the Fermi surfaces and superconducting nodal lines to the presence of protected zero-energy states at the boundary of the system. Depending on the case, the boundary states are either linearly dispersing (i.e., Dirac or Majorana states) or are dispersionless, forming two-dimensional surface flat bands or one-dimensional arc surface states. We study examples of gapless topological phases in symmetry class AIII and DIII, focusing in particular on nodal superconductors, such as nodal non-centrosymmetric superconductors. For some cases we explicitly compute the surface spectrum and examine the signatures of the topological boundary states in the surface density of states.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.