Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Model Predictive Consensus via the Alternating Direction Method of Multipliers (1212.1296v1)

Published 6 Dec 2012 in math.OC and cs.SY

Abstract: We propose a distributed optimization method for solving a distributed model predictive consensus problem. The goal is to design a distributed controller for a network of dynamical systems to optimize a coupled objective function while respecting state and input constraints. The distributed optimization method is an augmented Lagrangian method called the Alternating Direction Method of Multipliers (ADMM), which was introduced in the 1970s but has seen a recent resurgence in the context of dramatic increases in computing power and the development of widely available distributed computing platforms. The method is applied to position and velocity consensus in a network of double integrators. We find that a few tens of ADMM iterations yield closed-loop performance near what is achieved by solving the optimization problem centrally. Furthermore, the use of recent code generation techniques for solving local subproblems yields fast overall computation times.

Citations (69)

Summary

We haven't generated a summary for this paper yet.