Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Separability of Targets Using Binary Proximity Sensors (1211.4441v1)

Published 19 Nov 2012 in cs.IT and math.IT

Abstract: We consider the problem where a network of sensors has to detect the presence of targets at any of $n$ possible locations in a finite region. All such locations may not be occupied by a target. The data from sensors is fused to determine the set of locations that have targets. We term this the separability problem. In this paper, we address the separability of an asymptotically large number of static target locations by using binary proximity sensors. Two models for target locations are considered: (i) when target locations lie on a uniformly spaced grid; and, (ii) when target locations are i.i.d. uniformly distributed in the area. Sensor locations are i.i.d uniformly distributed in the same finite region, independent of target locations. We derive conditions on the sensing radius and the number of sensors required to achieve separability. Order-optimal scaling laws, on the number of sensors as a function of the number of target locations, for two types of separability requirements are derived. The robustness or security aspects of the above problem is also addressed. It is shown that in the presence of adversarial sensors, which toggle their sensed reading and inject binary noise, the scaling laws for separability remain unaffected.

Citations (3)

Summary

We haven't generated a summary for this paper yet.