Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward optimal placement of spatial sensors (2307.04634v1)

Published 10 Jul 2023 in cs.RO and stat.OT

Abstract: This paper addresses the challenges of optimally placing a finite number of sensors to detect Poisson-distributed targets in a bounded domain. We seek to rigorously account for uncertainty in the target arrival model throughout the problem. Sensor locations are selected to maximize the probability that no targets are missed. While this objective function is well-suited to applications where failure to detect targets is highly undesirable, it does not lead to a computationally efficient optimization problem. We propose an approximation of the objective function that is non-negative, submodular, and monotone and for which greedy selection of sensor locations works well. We also characterize the gap between the desired objective function and our approximation. For numerical illustrations, we consider the case of the detection of ship traffic using sensors mounted on the seafloor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Y. Yuan, F. E. Bachl, F. Lindgren, D. L. Borchers, J. B. Illian, S. T. Buckland, H. Rue, and T. Gerrodette, “Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales,” The Annals of Applied Statistics, vol. 11, no. 4, pp. 2270–2297, 2017.
  2. M. Jullum, T. Thorarinsdottir, and F. E. Bachl, “Estimating seal pup production in the Greenland Sea by using Bayesian hierarchical modelling,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 69, no. 2, pp. 327–352, 2020.
  3. J. Mäkinen and J. Vanhatalo, “Hierarchical Bayesian model reveals the distributional shifts of arctic marine mammals,” Diversity and Distributions, vol. 24, no. 10, pp. 1381–1394, 2018.
  4. P. Diggle, B. Rowlingson, and T.-l. Su, “Point process methodology for on-line spatio-temporal disease surveillance,” Environmetrics: The Official Journal of the International Environmetrics Society, vol. 16, no. 5, pp. 423–434, 2005.
  5. A. C. Gatrell, T. C. Bailey, P. J. Diggle, and B. S. Rowlingson, “Spatial point pattern analysis and its application in geographical epidemiology,” Transactions of the Institute of British geographers, pp. 256–274, 1996.
  6. C. X. Cunningham, S. Comte, H. McCallum, D. G. Hamilton, R. Hamede, A. Storfer, T. Hollings, M. Ruiz-Aravena, D. H. Kerlin, B. W. Brook et al., “Quantifying 25 years of disease-caused declines in Tasmanian devil populations: host density drives spatial pathogen spread,” Ecology Letters, vol. 24, no. 5, pp. 958–969, 2021.
  7. S. Shirota and A. E. Gelfand, “Space and circular time log Gaussian Cox processes with application to crime event data,” The Annals of Applied Statistics, pp. 481–503, 2017.
  8. R. Szechtman, M. Kress, K. Lin, and D. Cfir, “Models of sensor operations for border surveillance,” Naval Research Logistics (NRL), vol. 55, no. 1, pp. 27–41, 2008.
  9. J. A. Grant, D. S. Leslie, K. Glazebrook, R. Szechtman, and A. N. Letchford, “Adaptive policies for perimeter surveillance problems,” European Journal of Operational Research, vol. 283, no. 1, pp. 265–278, 2020.
  10. M. Mutny and A. Krause, “No-regret algorithms for capturing events in Poisson point processes,” in International Conference on Machine Learning.   PMLR, 2021, pp. 7894–7904.
  11. M. Mutnỳ and A. Krause, “Sensing Cox processes via posterior sampling and positive bases,” arXiv preprint arXiv:2110.11181, 2021.
  12. J. Møller, A. R. Syversveen, and R. P. Waagepetersen, “Log Gaussian Cox processes,” Scandinavian Journal of Statistics, vol. 25, no. 3, pp. 451–482, 1998.
  13. P. J. Diggle, P. Moraga, B. Rowlingson, and B. M. Taylor, “Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm,” Statistical Science, vol. 28, no. 4, pp. 542–563, 2013.
  14. H. Rue, S. Martino, and N. Chopin, “Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations,” Journal of the Royal Statistical Society: Series b (statistical methodology), vol. 71, no. 2, pp. 319–392, 2009.
  15. S. Martino and A. Riebler, “Integrated nested Laplace approximations (INLA),” arXiv preprint arXiv:1907.01248, 2019.
  16. A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies.” Journal of Machine Learning Research, vol. 9, no. 2, 2008.
  17. G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions—i,” Mathematical programming, vol. 14, no. 1, pp. 265–294, 1978.
  18. J. Liao and A. Berg, “Sharpening Jensen’s inequality,” The American Statistician, 2018.
  19. Bureau of Ocean Energy Management (BOEM) and National Oceanic and Atmospheric Administration (NOAA). MarineCadastre.gov. 2020 Vessel Traffic Data. Retrieved: September 5th 2022. from marinecadastre.gov/data.
  20. F. E. Bachl, F. Lindgren, D. L. Borchers, and J. B. Illian, “inlabru: an r package for Bayesian spatial modelling from ecological survey data,” Methods in Ecology and Evolution, vol. 10, no. 6, pp. 760–766, 2019.
  21. F. Lindgren and H. Rue, “Bayesian spatial modelling with R-INLA,” Journal of statistical software, vol. 63, pp. 1–25, 2015.
  22. “Matern SPDE model object with PC prior for INLA,” Dec 2019. [Online]. Available: https://rdrr.io/github/INBO-BMK/INLA/man/inla.spde2.pcmatern.html

Summary

We haven't generated a summary for this paper yet.