Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced Multi-Target Tracking in Dynamic Environments: Distributed Control Methods Within the Random Finite Set Framework (2401.14085v1)

Published 25 Jan 2024 in eess.SY, cs.SY, and eess.SP

Abstract: Tracking multiple targets in dynamic environments using distributed sensor networks is a challenging problem that has received significant attention in recent years. In such scenarios, the network of sensors must coordinate their actions to estimate the locations and trajectories of multiple targets accurately. Multi-sensor control methods can improve the performance of these networks by enabling efficient utilization of resources and enhancing the accuracy of the estimated target states. This paper proposes two novel multi-sensor control methods that utilize the Random Finite Set (RFS) framework to address this problem. Our methods improve computational tractability and enable fully distributed control, making them suitable for real-time applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Constrained multi-sensor control using a multi-target mse bound and a δ𝛿\deltaitalic_δ-glmb filter, Sensors 18 (2018). URL: https://www.mdpi.com/1424-8220/18/7/2308. doi:10.3390/s18072308.
  2. A survey on trust computation in the internet of things, THE JOURNAL OF KOREAN INSTITUTE OF COMMUNICATIONS AND INFORMATION SCIENCES (J-KICS) 33 (2016) 10–27.
  3. A scheme for robust distributed sensor fusion based on average consensus, in: IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005., IEEE, 2005, pp. 63–70.
  4. Distributed fusion of multitarget densities and consensus PHD/CPHD filters, in: I. Kadar (Ed.), Signal Processing, Sensor/Information Fusion, and Target Recognition XXIV, volume 9474, International Society for Optics and Photonics, SPIE, 2015, p. 94740E. URL: https://doi.org/10.1117/12.2176948. doi:10.1117/12.2176948.
  5. Convergence of distributed flooding and its application for distributed bayesian filtering, IEEE Transactions on Signal and Information Processing over Networks 3 (2017) 580–591. doi:10.1109/TSIPN.2016.2631944.
  6. On arithmetic average fusion and its application for distributed multi-bernoulli multitarget tracking, IEEE Transactions on Signal Processing 68 (2020) 2883–2896. doi:10.1109/TSP.2020.2985643.
  7. The cardinality balanced multi-target multi-bernoulli filter and its implementations, IEEE Transactions on Signal Processing 57 (2008) 409–423.
  8. B. T. Vo, B. N. Vo, Labeled random finite sets and multi-object conjugate priors, IEEE Transactions on Signal Processing 61 (2013) 3460–3475. doi:10.1109/TSP.2013.2259822. arXiv:arXiv:1312.2372v1.
  9. Labeled random finite sets and the Bayes multi-target tracking filter, IEEE Transactions on Signal Processing 62 (2014) 6554–6567. doi:10.1109/TSP.2014.2364014.
  10. The multiple model labeled multi-bernoulli filter, in: 2015 18th International Conference on Information Fusion (Fusion), IEEE, 2015, pp. 1574–1580.
  11. B. Wei, L. Zhou, Cell lineage tracking based on labeled random finite set filtering, in: 2018 International Conference on Control, Automation and Information Sciences (ICCAIS), 2018, pp. 163–168. doi:10.1109/ICCAIS.2018.8570327.
  12. R. P. S. Mahler, Advances in statistical multisource-multitarget information fusion, 2014.
  13. Fusion of labeled rfs densities with minimum information loss, IEEE Transactions on Signal Processing 68 (2020) 5855–5868. doi:10.1109/TSP.2020.3028496.
  14. B. Ristic, B.-N. Vo, Sensor control for multi-object state-space estimation using random finite sets, Automatica 46 (2010) 1812–1818. URL: https://www.sciencedirect.com/science/article/pii/S0005109810002955. doi:https://doi.org/10.1016/j.automatica.2010.06.045.
  15. Multi-bernoulli sensor control via minimization of expected estimation errors, IEEE Transactions on Aerospace and Electronic Systems 51 (2015) 1762–1773. doi:10.1109/TAES.2015.140211.
  16. Sensor control for multi-target tracking using cauchy-schwarz divergence, in: 2015 18th International Conference on Information Fusion (Fusion), 2015, pp. 937–944.
  17. H. G. Hoang, B. T. Vo, Sensor management for multi-target tracking via multi-bernoulli filtering, Automatica 50 (2014) 1135–1142. URL: https://www.sciencedirect.com/science/article/pii/S0005109814000454. doi:https://doi.org/10.1016/j.automatica.2014.02.007.
  18. Multi-sensor control for multi-target tracking using cauchy-schwarz divergence, in: 2016 19th International Conference on Information Fusion (FUSION), 2016, pp. 2059–2066.
  19. Multi-sensor control for multi-object bayes filters, Signal Processing 142 (2018) 260–270. URL: https://www.sciencedirect.com/science/article/pii/S0165168417302773. doi:https://doi.org/10.1016/j.sigpro.2017.07.031.
  20. Tracking of targets of interest using labeled multi-bernoulli filter with multi-sensor control, Signal Processing 171 (2020) 107451. URL: https://www.sciencedirect.com/science/article/pii/S016516841930502X. doi:https://doi.org/10.1016/j.sigpro.2019.107451.
  21. Distributed multi-sensor control for multi-target tracking, in: International Conference on Control, Automation and Information Sciences (ICCAIS 2022), 2022, p. 72. doi:10.1117/12.2637606.
  22. On-line visual tracking with occlusion handling, Sensors 20 (2020). URL: https://www.mdpi.com/1424-8220/20/3/929,ISSN={1424-8220},DOI={10.3390/s20030929}.
  23. Sensor control for selective object tracking using labeled multi-bernoulli filter, in: 2018 21st International Conference on Information Fusion (FUSION), 2018, pp. 2218–2224. doi:10.23919/ICIF.2018.8455829.
  24. Centralized cooperative sensor fusion for dynamic sensor network with limited field-of-view via labeled multi-bernoulli filter, IEEE Transactions on Signal Processing 69 (2021) 878–891. doi:10.1109/TSP.2020.3048595.
  25. Cooperative sensor fusion in centralized sensor networks using cauchy–schwarz divergence, Signal Processing 167 (2020) 107278. URL: https://www.sciencedirect.com/science/article/pii/S0165168419303329. doi:https://doi.org/10.1016/j.sigpro.2019.107278.
  26. Multi-sensor fusion for connected driving: A review, Unpublished (2022).
  27. D. Akselrod, T. Kirubarajan, Collaborative distributed sensor management and information exchange flow control for multitarget tracking using Markov decision processes, in: I. Kadar (Ed.), Signal Processing, Sensor Fusion, and Target Recognition XVII, volume 6968, International Society for Optics and Photonics, SPIE, 2008, pp. 165 – 175. URL: https://doi.org/10.1117/12.779348. doi:10.1117/12.779348.
  28. Y. Fu, L. Yang, Sensor mobility control for multitarget tracking in mobile sensor networks, International Journal of Distributed Sensor Networks 10 (2014) 278179. URL: https://doi.org/10.1155/2014/278179. doi:10.1155/2014/278179. arXiv:https://doi.org/10.1155/2014/278179.
  29. Outdoor flocking of quadcopter drones with decentralized model predictive control, ISA Transactions 71 (2017) 84–92. URL: https://www.sciencedirect.com/science/article/pii/S0019057817304895. doi:https://doi.org/10.1016/j.isatra.2017.07.005, special issue on Distributed Coordination Control for Multi-Agent Systems in Engineering Applications.
  30. Multi-target tracking for unmanned aerial vehicle swarms using deep reinforcement learning, Neurocomputing 466 (2021) 285–297. URL: https://www.sciencedirect.com/science/article/pii/S0925231221014223. doi:https://doi.org/10.1016/j.neucom.2021.09.044.
  31. Z. Yang, W. U. Bajwa, Byrdie: Byzantine-resilient distributed coordinate descent for decentralized learning, CoRR abs/1708.08155 (2017). URL: http://arxiv.org/abs/1708.08155. arXiv:1708.08155.
  32. Sensor fault diagnosis and fault tolerant control of quadrotor uav based on genetic algorithm, Journal of Sensors 2022 (2022) 1–8. doi:10.1155/2022/8626722.
  33. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving fwnn software sensor, Journal of Environmental Management 187 (2017) 550–559. URL: https://www.sciencedirect.com/science/article/pii/S0301479716308581. doi:https://doi.org/10.1016/j.jenvman.2016.10.056.
  34. Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm, Computers & Mathematics with Applications 57 (2009) 1756–1766. URL: https://www.sciencedirect.com/science/article/pii/S089812210800552X. doi:https://doi.org/10.1016/j.camwa.2008.10.036, proceedings of the International Conference.
  35. R. P. Mahler, T. R. Zajic, Probabilistic objective functions for sensor management, in: Signal Processing, Sensor Fusion, and Target Recognition XIII, volume 5429, SPIE, 2004, pp. 233–244.
  36. Multi-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles, Signal Processing 119 (2016) 28–42. URL: https://www.sciencedirect.com/science/article/pii/S0165168415002339. doi:https://doi.org/10.1016/j.sigpro.2015.07.007.
  37. Robust multi-bernoulli sensor selection for multi-target tracking in sensor networks, IEEE Signal Processing Letters 20 (2013) 1167–1170. doi:10.1109/LSP.2013.2283735.
  38. T. van Erven, P. Harremoës, Rényi divergence and kullback-leibler divergence, IEEE Transactions on Information Theory 60 (2014) 3797–3820.
  39. Consensus-based labeled multi-Bernoulli filter with event-triggered communication, IEEE Transactions on Signal Processing 70 (2022) 1185–1196. doi:10.1109/TSP.2022.3154227.
  40. A consistent metric for performance evaluation of multi-object filters, IEEE Transactions on Signal Processing 56 (2008) 3447–3457. doi:10.1109/TSP.2008.920469.
  41. Ospa(2): Using the ospa metric to evaluate multi-target tracking performance, in: 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), 2017, pp. 86–91. doi:10.1109/ICCAIS.2017.8217598.

Summary

We haven't generated a summary for this paper yet.