Duality functors for quantum groupoids (1211.3773v5)
Abstract: We present a formal algebraic language to deal with quantum deformations of Lie-Rinehart algebras - or Lie algebroids, in a geometrical setting. In particular, extending the ice-breaking ideas introduced by Xu in [Ping Xu, "Quantum groupoids", Comm. Math. Phys. 216 (2001), 539-581], we provide suitable notions of "quantum groupoids". For these objects, we detail somewhat in depth the formalism of linear duality; this yields several fundamental antiequivalences among (the categories of) the two basic kinds of "quantum groupoids". On the other hand, we develop a suitable version of a "quantum duality principle" for quantum groupoids, which extends the one for quantum groups - dealing with Hopf algebras - originally introduced by Drinfeld (cf. [V. G. Drinfeld, "Quantum groups", Proc. ICM (Berkeley, 1986), 1987, pp. 798-820], sec. 7) and later detailed in [F. Gavarini, "The quantum duality principle", Annales de l'Institut Fourier 53 (2002), 809-834].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.