Hodge theory and derived categories of cubic fourfolds
Abstract: Cubic fourfolds behave in many ways like K3 surfaces. Certain cubics - conjecturally, the ones that are rational - have specific K3s associated to them geometrically. Hassett has studied cubics with K3s associated to them at the level of Hodge theory, and Kuznetsov has studied cubics with K3s associated to them at the level of derived categories. These two notions of having an associated K3 should coincide. We prove that they coincide generically: Hassett's cubics form a countable union of irreducible Noether-Lefschetz divisors in moduli space, and we show that Kuznetsov's cubics are a dense subset of these, forming a non-empty, Zariski open subset in each divisor.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.