Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Caffarelli-Kohn-Nirenberg inequality on metric measure spaces with applications (1211.3171v2)

Published 14 Nov 2012 in math.DG, math.AP, and math.MG

Abstract: We prove that if a metric measure space satisfies the volume doubling condition and the Caffarelli-Kohn-Nirenberg inequality with the same exponent $n \ge 3$, then it has exactly the $n$-dimensional volume growth. As an application, if an $n$-dimensional Finsler manifold of non-negative $n$-Ricci curvature satisfies the Caffarelli-Kohn-Nirenberg inequality with the sharp constant, then its flag curvature is identically zero. In the particular case of Berwald spaces, such a space is necessarily isometric to a Minkowski space.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.