Papers
Topics
Authors
Recent
2000 character limit reached

A General Framework For Consistency of Principal Component Analysis

Published 12 Nov 2012 in math.ST and stat.TH | (1211.2671v6)

Abstract: A general asymptotic framework is developed for studying consis- tency properties of principal component analysis (PCA). Our frame- work includes several previously studied domains of asymptotics as special cases and allows one to investigate interesting connections and transitions among the various domains. More importantly, it enables us to investigate asymptotic scenarios that have not been considered before, and gain new insights into the consistency, subspace consistency and strong inconsistency regions of PCA and the boundaries among them. We also establish the corresponding convergence rate within each region. Under general spike covariance models, the dimension (or the number of variables) discourages the consistency of PCA, while the sample size and spike information (the relative size of the population eigenvalues) encourages PCA consistency. Our framework nicely illustrates the relationship among these three types of information in terms of dimension, sample size and spike size, and rigorously characterizes how their relationships affect PCA consistency.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.