A Linking Number Definition of the Affine Index Polynomial and Applications (1211.1747v1)
Abstract: This paper gives an alternate definition of the Affine Index Polynomial (called the Wriggle Polynomial) using virtual linking numbers and explores applications of this polynomial. In particular, it proves the Cosmetic Crossing Change Conjecture for odd virtual knots and pure virtual knots. It also demonstrates that the polynomial can detect mutations by positive rotation and proves it cannot detect mutations by positive reflection. Finally it exhibits a pair of mutant knots that can be distinguished by a Type 2 Vassiliev Invariant coming from the polynomial.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.