Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Surprisingly Rational: Probability theory plus noise explains biases in judgment (1211.0501v3)

Published 1 Nov 2012 in physics.data-an, cs.AI, and stat.AP

Abstract: The systematic biases seen in people's probability judgments are typically taken as evidence that people do not reason about probability using the rules of probability theory, but instead use heuristics which sometimes yield reasonable judgments and sometimes systematic biases. This view has had a major impact in economics, law, medicine, and other fields; indeed, the idea that people cannot reason with probabilities has become a widespread truism. We present a simple alternative to this view, where people reason about probability according to probability theory but are subject to random variation or noise in the reasoning process. In this account the effect of noise is cancelled for some probabilistic expressions: analysing data from two experiments we find that, for these expressions, people's probability judgments are strikingly close to those required by probability theory. For other expressions this account produces systematic deviations in probability estimates. These deviations explain four reliable biases in human probabilistic reasoning (conservatism, subadditivity, conjunction and disjunction fallacies). These results suggest that people's probability judgments embody the rules of probability theory, and that biases in those judgments are due to the effects of random noise.

Citations (119)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube