Papers
Topics
Authors
Recent
Search
2000 character limit reached

Hierarchical Learning Algorithm for the Beta Basis Function Neural Network

Published 30 Oct 2012 in cs.NE and cs.AI | (1210.8124v1)

Abstract: The paper presents a two-level learning method for the design of the Beta Basis Function Neural Network BBFNN. A Genetic Algorithm is employed at the upper level to construct BBFNN, while the key learning parameters :the width, the centers and the Beta form are optimised using the gradient algorithm at the lower level. In order to demonstrate the effectiveness of this hierarchical learning algorithm HLABBFNN, we need to validate our algorithm for the approximation of non-linear function.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.