Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasi maximum likelihood estimation for strongly mixing state space models and multivariate Lévy-driven CARMA processes

Published 28 Oct 2012 in math.ST, stat.ME, and stat.TH | (1210.7447v1)

Abstract: We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-ime linear state space models and equidistantly observed multivariate L\'evy-driven continuoustime autoregressive moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and asymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition on the output process of the state space model. In the second part of the paper, we investigate probabilistic and analytical properties of equidistantly sampled continuous-time state space models and apply our results from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymptotically normally distributed for any sampling frequency. We also demonstrate the practical applicability of our method through a simulation study and a data example from econometrics.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.