Papers
Topics
Authors
Recent
Search
2000 character limit reached

Holographic Geometries of one-dimensional gapped quantum systems from Tensor Network States

Published 25 Oct 2012 in hep-th, cond-mat.str-el, and quant-ph | (1210.6759v2)

Abstract: We investigate a recent conjecture connecting the AdS/CFT correspondence and entanglement renormalization tensor network states (MERA). The proposal interprets the tensor connectivity of the MERA states associated to quantum many body systems at criticality, in terms of a dual holographic geometry which accounts for the qualitative aspects of the entanglement and the correlations in these systems. In this work, some generic features of the entanglement entropy and the two point functions in the ground state of one dimensional gapped systems are considered through a tensor network state. The tensor network is builded up as an hybrid composed by a finite number of MERA layers and a matrix product state (MPS) acting as a cap layer. Using the holographic formula for the entanglement entropy, here it is shown that an asymptotically AdS metric can be associated to the hybrid MERA-MPS state. The metric is defined by a function that manages the growth of the minimal surfaces near the capped region of the geometry. Namely, it is shown how the behaviour of the entanglement entropy and the two point correlators in the tensor network, remains consistent with a geometric computation which only depends on this function. From these observations, an explicit connection between the entanglement structure of the tensor network and the function which defines the geometry is provided.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.