Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Measurement errors and scaling relations in astrophysics: a review (1210.6232v1)

Published 23 Oct 2012 in astro-ph.IM, astro-ph.CO, physics.data-an, and stat.AP

Abstract: This review article considers some of the most common methods used in astronomy for regressing one quantity against another in order to estimate the model parameters or to predict an observationally expensive quantity using trends between object values. These methods have to tackle some of the awkward features prevalent in astronomical data, namely heteroscedastic (point-dependent) errors, intrinsic scatter, non-ignorable data collection and selection effects, data structure and non-uniform population (often called Malmquist bias), non-Gaussian data, outliers and mixtures of regressions. We outline how least square fits, weighted least squares methods, Maximum Likelihood, survival analysis, and Bayesian methods have been applied in the astrophysics literature when one or more of these features is present. In particular we concentrate on errors-in-variables regression and we advocate Bayesian techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube