Papers
Topics
Authors
Recent
2000 character limit reached

Measurement errors and scaling relations in astrophysics: a review

Published 23 Oct 2012 in astro-ph.IM, astro-ph.CO, physics.data-an, and stat.AP | (1210.6232v1)

Abstract: This review article considers some of the most common methods used in astronomy for regressing one quantity against another in order to estimate the model parameters or to predict an observationally expensive quantity using trends between object values. These methods have to tackle some of the awkward features prevalent in astronomical data, namely heteroscedastic (point-dependent) errors, intrinsic scatter, non-ignorable data collection and selection effects, data structure and non-uniform population (often called Malmquist bias), non-Gaussian data, outliers and mixtures of regressions. We outline how least square fits, weighted least squares methods, Maximum Likelihood, survival analysis, and Bayesian methods have been applied in the astrophysics literature when one or more of these features is present. In particular we concentrate on errors-in-variables regression and we advocate Bayesian techniques.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.