Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Free Brownian motion and free convolution semigroups: multiplicative case (1210.6090v3)

Published 23 Oct 2012 in math.FA and math.PR

Abstract: We consider a pair of probability measures $\mu,\nu$ on the unit circle such that $\Sigma_{\lambda}(\eta_{\nu}(z))=z/\eta_{\mu}(z)$. We prove that the same type of equation holds for any $t\geq 0$ when we replace $\nu$ by $\nu\boxtimes\lambda_t$ and $\mu$ by $\mathbb{M}_t(\mu)$, where $\lambda_t$ is the free multiplicative analogue of the normal distribution on the unit circle of $\mathbb{C}$ and $\mathbb{M}_t$ is the map defined by Arizmendi and Hasebe. These equations are a multiplicative analogue of equations studied by Belinschi and Nica. In order to achieve this result, we study infinite divisibility of the measures associated with subordination functions in multiplicative free Brownian motion and multiplicative free convolution semigroups. We use the modified $\mathcal{S}$-transform introduced by Raj Rao and Speicher to deal with the case that $\nu$ has mean zero. The same type of the result holds for convolutions on the positive real line. We also obtain some regularity properties for the free multiplicative analogue of the normal distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube