Ergodic and Mixing Quantum Channels in Finite Dimensions (1210.5625v3)
Abstract: The paper provides a systematic characterization of quantum ergodic and mixing channels in finite dimensions and a discussion of their structural properties. In particular, we discuss ergodicity in the general case where the fixed point of the channel is not a full-rank (faithful) density matrix. Notably, we show that ergodicity is stable under randomizations, namely that every random mixture of an ergodic channel with a generic channel is still ergodic. In addition, we prove several conditions under which ergodicity can be promoted to the stronger property of mixing. Finally, exploiting a suitable correspondence between quantum channels and generators of quantum dynamical semigroups, we extend our results to the realm of continuous-time quantum evolutions, providing a characterization of ergodic Lindblad generators and showing that they are dense in the set of all possible generators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.