2000 character limit reached
Modeling with Copulas and Vines in Estimation of Distribution Algorithms (1210.5500v1)
Published 19 Oct 2012 in cs.NE and stat.ME
Abstract: The aim of this work is studying the use of copulas and vines in the optimization with Estimation of Distribution Algorithms (EDAs). Two EDAs are built around the multivariate product and normal copulas, and other two are based on pair-copula decomposition of vine models. Empirically we study the effect of both marginal distributions and dependence structure separately, and show that both aspects play a crucial role in the success of the optimization. The results show that the use of copulas and vines opens new opportunities to a more appropriate modeling of search distributions in EDAs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.