Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The Cuntz semigroup and stability of close C*-algebras (1210.4533v2)

Published 16 Oct 2012 in math.OA

Abstract: We prove that separable C*-algebras which are completely close in a natural uniform sense have isomorphic Cuntz semigroups, continuing a line of research developed by Kadison - Kastler, Christensen, and Khoshkam. This result has several applications: we are able to prove that the property of stability is preserved by close C*-algebras provided that one algebra has stable rank one; close C*-algebras must have affinely homeomorphic spaces of lower-semicontinuous quasitraces; strict comparison is preserved by sufficient closeness of C*-algebras. We also examine C*-algebras which have a positive answer to Kadison's Similarity Problem, as these algebras are completely close whenever they are close. A sample consequence is that sufficiently close C*-algebras have isomorphic Cuntz semigroups when one algebra absorbs the Jiang-Su algebra tensorially.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.