The Cuntz semigroup and stability of close C*-algebras (1210.4533v2)
Abstract: We prove that separable C*-algebras which are completely close in a natural uniform sense have isomorphic Cuntz semigroups, continuing a line of research developed by Kadison - Kastler, Christensen, and Khoshkam. This result has several applications: we are able to prove that the property of stability is preserved by close C*-algebras provided that one algebra has stable rank one; close C*-algebras must have affinely homeomorphic spaces of lower-semicontinuous quasitraces; strict comparison is preserved by sufficient closeness of C*-algebras. We also examine C*-algebras which have a positive answer to Kadison's Similarity Problem, as these algebras are completely close whenever they are close. A sample consequence is that sufficiently close C*-algebras have isomorphic Cuntz semigroups when one algebra absorbs the Jiang-Su algebra tensorially.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.