Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions (1210.0567v1)
Abstract: We prove existence of isoperimetric regions for every volume in non-compact Riemannian $n$-manifolds $(M,g)$, $n\geq 2$, having Ricci curvature $Ric_g\geq (n-1) k_0 g$ and being locally asymptotic to the simply connected space form of constant sectional curvature $k_0$; moreover in case $k_0=0$ we show that the isoperimetric regions are indecomposable. We also discuss some physically and geometrically relevant examples. Finally, under assumptions on the scalar curvature we prove existence of isoperimetric regions of small volume.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.