Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scalable Triadic Analysis of Large-Scale Graphs: Multi-Core vs. Multi- Processor vs. Multi-Threaded Shared Memory Architectures

Published 27 Sep 2012 in cs.DC and cs.SI | (1209.6308v1)

Abstract: Triadic analysis encompasses a useful set of graph mining methods that are centered on the concept of a triad, which is a subgraph of three nodes. Such methods are often applied in the social sciences as well as many other diverse fields. Triadic methods commonly operate on a triad census that counts the number of triads of every possible edge configuration in a graph. Like other graph algorithms, triadic census algorithms do not scale well when graphs reach tens of millions to billions of nodes. To enable the triadic analysis of large-scale graphs, we developed and optimized a triad census algorithm to efficiently execute on shared memory architectures. We then conducted performance evaluations of the parallel triad census algorithm on three specific systems: Cray XMT, HP Superdome, and AMD multi-core NUMA machine. These three systems have shared memory architectures but with markedly different hardware capabilities to manage parallelism.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.