2000 character limit reached
Self-consistent multiple complex-kink solutions in Bogoliubov-de Gennes and chiral Gross-Neveu systems (1209.6206v2)
Published 27 Sep 2012 in cond-mat.supr-con, cond-mat.quant-gas, hep-ph, and hep-th
Abstract: We exhaust all exact self-consistent solutions of complex-valued fermionic condensates in the 1+1 dimensional Bogoliubov-de Gennes and chiral Gross-Neveu systems under uniform boundary conditions. We obtain $n$ complex (twisted) kinks, or grey solitons, with $2n$ parameters corresponding to their positions and phase shifts. Each soliton can be placed at an arbitrary position while the self-consistency requires its phase shift to be quantized by $\pi/N$ for $N$ flavors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.