Papers
Topics
Authors
Recent
2000 character limit reached

Convergence rates in $\mathbf{\ell^1}$-regularization if the sparsity assumption fails (1209.5732v2)

Published 25 Sep 2012 in math.NA and math.OC

Abstract: Variational sparsity regularization based on $\ell1$-norms and other nonlinear functionals has gained enormous attention recently, both with respect to its applications and its mathematical analysis. A focus in regularization theory has been to develop error estimation in terms of regularization parameter and noise strength. For this sake specific error measures such as Bregman distances and specific conditions on the solution such as source conditions or variational inequalities have been developed and used. In this paper we provide, for a certain class of ill-posed linear operator equations, a convergence analysis that works for solutions that are not completely sparse, but have a fast decaying nonzero part. This case is not covered by standard source conditions, but surprisingly can be treated with an appropriate variational inequality. As a consequence the paper also provides the first examples where the variational inequality approach, which was often believed to be equivalent to appropriate source conditions, can indeed go farther than the latter.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube