Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Generalised Gangolli-Levy-Khintchine Formula for Infinitely Divisible Measures and Levy Processes on Semi-Simple Lie Groups and Symmetric Spaces (1209.4217v2)

Published 19 Sep 2012 in math.PR

Abstract: In 1964 R.Gangolli published a L\'{e}vy-Khintchine type formula which characterised $K$ bi-invariant infinitely divisible probability measures on a symmetric space $G/K$. His main tool was Harish-Chandra's spherical functions which he used to construct a generalisation of the Fourier transform of a measure. In this paper we use generalised spherical functions (or Eisenstein integrals) and extensions of these which we construct using representation theory to obtain such a characterisation for arbitrary infinitely divisible probability measures on a non-compact symmetric space. We consider the example of hyperbolic space in some detail.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.