On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow (1209.3998v2)
Abstract: In this article, we study the axisymmetric surface diffusion flow (ASD), a fourth-order geometric evolution law. In particular, we prove that ASD generates a real analytic semiflow in the space of (2 + \alpha)-little-H\"older regular surfaces of revolution embedded in R3 and satisfying periodic boundary conditions. We also give conditions for global existence of solutions and prove that solutions are real analytic in time and space. Further, we investigate the geometric properties of solutions to ASD. Utilizing a connection to axisymmetric surfaces with constant mean curvature, we characterize the equilibria of ASD. Then, focusing on the family of cylinders, we establish results regarding stability, instability and bifurcation behavior, with the radius acting as a bifurcation parameter for the problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.