Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Codensity and the ultrafilter monad (1209.3606v3)

Published 17 Sep 2012 in math.CT, math.GN, and math.LO

Abstract: Even a functor without an adjoint induces a monad, namely, its codensity monad; this is subject only to the existence of certain limits. We clarify the sense in which codensity monads act as substitutes for monads induced by adjunctions. We also expand on an undeservedly ignored theorem of Kennison and Gildenhuys: that the codensity monad of the inclusion of (finite sets) into (sets) is the ultrafilter monad. This result is analogous to the correspondence between measures and integrals. So, for example, we can speak of integration against an ultrafilter. Using this language, we show that the codensity monad of the inclusion of (finite-dimensional vector spaces) into (vector spaces) is double dualization. From this it follows that compact Hausdorff spaces have a linear analogue: linearly compact vector spaces. Finally, we show that ultraproducts are categorically inevitable: the codensity monad of the inclusion of (finite families of sets) into (families of sets) is the ultraproduct monad.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.