The Collatz conjecture and De Bruijn graphs
Abstract: We study variants of the well-known Collatz graph, by considering the action of the 3n+1 function on congruence classes. For moduli equal to powers of 2, these graphs are shown to be isomorphic to binary De Bruijn graphs. Unlike the Collatz graph, these graphs are very structured, and have several interesting properties. We then look at a natural generalization of these finite graphs to the 2-adic integers, and show that the isomorphism between these infinite graphs is exactly the conjugacy map previously studied by Bernstein and Lagarias. Finally, we show that for generalizations of the 3n+1 function, we get similar relations with 2-adic and p-adic De Bruijn graphs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.