Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Hajj And Umrah Location Classification System For Video Crowded Scenes (1209.3433v1)

Published 15 Sep 2012 in cs.CV, cs.CY, and cs.LG

Abstract: In this paper, a new automatic system for classifying ritual locations in diverse Hajj and Umrah video scenes is investigated. This challenging subject has mostly been ignored in the past due to several problems one of which is the lack of realistic annotated video datasets. HUER Dataset is defined to model six different Hajj and Umrah ritual locations[26]. The proposed Hajj and Umrah ritual location classifying system consists of four main phases: Preprocessing, segmentation, feature extraction, and location classification phases. The shot boundary detection and background/foregroud segmentation algorithms are applied to prepare the input video scenes into the KNN, ANN, and SVM classifiers. The system improves the state of art results on Hajj and Umrah location classifications, and successfully recognizes the six Hajj rituals with more than 90% accuracy. The various demonstrated experiments show the promising results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.