Papers
Topics
Authors
Recent
2000 character limit reached

A review of the 1/N expansion in random tensor models (1209.3252v1)

Published 14 Sep 2012 in math-ph, hep-th, and math.MP

Abstract: Matrix models are a highly successful framework for the analytic study of random two dimensional surfaces with applications to quantum gravity in two dimensions, string theory, conformal field theory, statistical physics in random geometry, etc. Their success relies crucially on the so called 1/N expansion introduced by 't Hooft. In higher dimensions matrix models generalize to tensor models. In the absence of a viable 1/N expansion tensor models have for a long time been less successful in providing an analytically controlled theory of random higher dimensional topological spaces. This situation has drastically changed recently. Models for a generic complex tensor have been shown to admit a 1/N expansion dominated by graphs of spherical topology in arbitrary dimensions and to undergo a phase transition to a continuum theory.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.