Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras (1209.2966v1)
Abstract: Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.