Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Representation of Astronomical Images (1209.2657v1)

Published 12 Sep 2012 in math-ph, cs.CV, and math.MP

Abstract: Sparse representation of astronomical images is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm: i)Effectiveness at producing sparse representations. ii)Competitiveness, with respect to the time required to process large images.The latter is a consequence of the suitability of the proposed dictionaries for approximating images in partitions of small blocks.This feature makes it possible to apply the effective greedy selection technique Orthogonal Matching Pursuit, up to some block size. For blocks exceeding that size a refinement of the original Matching Pursuit approach is considered. The resulting method is termed Self Projected Matching Pursuit, because is shown to be effective for implementing, via Matching Pursuit itself, the optional back-projection intermediate steps in that approach.

Citations (24)

Summary

We haven't generated a summary for this paper yet.