Papers
Topics
Authors
Recent
Search
2000 character limit reached

Geometry and violent events in turbulent pair dispersion

Published 11 Sep 2012 in physics.flu-dyn and nlin.CD | (1209.2296v1)

Abstract: The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the tail of the inter-tracer distance probability distribution. The tail approaches a pure exponential at large times, contradicting Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson's distribution.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.