Papers
Topics
Authors
Recent
2000 character limit reached

The Noncommutative Harmonic Oscillator based in Simplectic Representation of Galilei Group

Published 31 Aug 2012 in math-ph and math.MP | (1208.6348v2)

Abstract: In this work we study symplectic unitary representations for the Galilei group. As a consequence the Schr\"odinger equation is derived in phase space. The formalism is based on the non-commutative structure of the star-product, and using the group theory approach as a guide a physical consistent theory in phase space is constructed. The state is described by a quasi-probability amplitude that is in association with the Wigner function. The 3D harmonic oscillator and the noncommutative oscillator are studied in phase space as an application, and the Wigner function associated to both cases are determined.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.