Papers
Topics
Authors
Recent
2000 character limit reached

Free fermions on a line: asymptotics of the entanglement entropy and entanglement spectrum from full counting statistics

Published 29 Aug 2012 in cond-mat.mes-hall, cond-mat.stat-mech, and quant-ph | (1208.5845v3)

Abstract: We consider the entanglement entropy for a line segment in the system of noninteracting one-dimensional fermions at zero temperature. In the limit of a large segment length L, the leading asymptotic behavior of this entropy is known to be logarithmic in L. We study finite-size corrections to this asymptotic behavior. Based on an earlier conjecture of the asymptotic expansion for full counting statistics in the same system, we derive a full asymptotic expansion for the von Neumann entropy and obtain first several corrections for the Renyi entropies. Our corrections for the Renyi entropies reproduce earlier results. We also discuss the entanglement spectrum in this problem in terms of single-particle occupation numbers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.