Free fermions on a line: asymptotics of the entanglement entropy and entanglement spectrum from full counting statistics (1208.5845v3)
Abstract: We consider the entanglement entropy for a line segment in the system of noninteracting one-dimensional fermions at zero temperature. In the limit of a large segment length L, the leading asymptotic behavior of this entropy is known to be logarithmic in L. We study finite-size corrections to this asymptotic behavior. Based on an earlier conjecture of the asymptotic expansion for full counting statistics in the same system, we derive a full asymptotic expansion for the von Neumann entropy and obtain first several corrections for the Renyi entropies. Our corrections for the Renyi entropies reproduce earlier results. We also discuss the entanglement spectrum in this problem in terms of single-particle occupation numbers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.