Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semidefinite representation for convex hulls of real algebraic curves (1208.3865v4)

Published 19 Aug 2012 in math.AG

Abstract: We show that the closed convex hull of any one-dimensional semi-algebraic subset of Rn has a semidefinite representation, meaning that it can be written as a linear projection of the solution set of some linear matrix inequality. This is proved by an application of the moment relaxation method. Given a nonsingular affine real algebraic curve C and a compact semialgebraic subset K of its R-points, the preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely generated. We prove that P(K) is stable, meaning that uniform degree bounds exist for weighted sum of squares representations of elements of P(K). We also extend this last result to the case where K is only virtually compact. The main technical tool for the proof of stability is the archimedean local-global principle. As a consequence of our results we prove that every convex semialgebraic subset of R2 has a semidefinite representation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube