Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inferring Chemical Reaction Patterns Using Rule Composition in Graph Grammars (1208.3153v2)

Published 15 Aug 2012 in cs.DM, cs.CE, and q-bio.MN

Abstract: Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is a natural and convenient approach tom odeling chemistry. Graph grammar rules are most naturally employed to model elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in particular in the analysis of larger systems, to summarize several subsequent reactions into a single composite chemical reaction. We use a generic approach for composing graph grammar rules to define a chemically useful rule compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically infer complex transformation patterns. This is useful for instance to understand the net effect of complex catalytic cycles such as the Formose reaction. The automatically inferred graph grammar rule is a generic representative that also covers the overall reaction pattern of the Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde. Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost pharmaceutical interest that can be understood as "generalized polymers" consisting of five-carbon (isoprene) and two-carbon units, respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jakob L. Andersen (15 papers)
  2. Christoph Flamm (20 papers)
  3. Daniel Merkle (29 papers)
  4. Peter F. Stadler (82 papers)
Citations (46)

Summary

We haven't generated a summary for this paper yet.